INTRODUCTION OF FUNCTIONAL GROUPS INTO 6 POSITION OF PYRIDOXAL

Yasuhiro Yamada*, Toshio Hayashi, Yuichi Fusho and Hirosuke Okada Department of Fermentation Technology, Faculty of Engineering, Osaka University, Yamadakami, Suita-shi, Osaka, Japan

Summary: The synthesis of 6-acylpyridoxal, 6-carboxyethylpyridoxal and 6-(3'aminopropyl)pyridoxal derivatives are described.

Pyridoxal-5'-phosphate (2), the active form of vitamin B_6 , is a coenzyme of many enzymes which catalyze transamination, decarboxylation, deamination, β -elimination and β -substitution of amino acids.

Pyridoxal (1), (2) and their derivatives also show some physiological activities.¹⁾ These facts have stimulated studies on the relation of their structure and activities. Although many derivatives of V.B₆ were reported, of which greater part were modified in position other than 6 position of their pyridine ring and only a few of them have a substituent on 6 position.^{1b, 2)} In order to obtain variants of pyridoxal or pyridoxal-5'-phosphate which retain their coenzyme activities and are applicable to immobilized coenzymes, the introduction of carbon functional groups into open 6 position of pyridoxal and elongation of them to appropriate spacers is a promising method.

In this communication, we wish to describe an acylation of 6 position of appropriately protected pyridoxal via its lithium compound and preparation of some 6-substituted pyridoxal derivatives.

Bromination of pyridoxal with pyridinium hydrobromide perbromide in $CHCl_3$ at room temperature with vigorous stirring for 3 h gave 6-bromopyridoxal (3) in 57% yield, [mp 138° (dp); mass, 247, 245 (M⁺); NMR (in d-DMSO) δ , 2.40 (CH₃), 4.85 (5'-CH₂-,d), 6.50 (4'-CH-); UV (in MeOH) nm, 225 (9,500), 288 (6,600)]. (3) was transformed to 6-bromo methylacetal (4) (mp 149°) by HCl in dry methanol

2603

(11) R = CH = CH CH

in 92% yield. (4) was benzylated with dimethylphenylbenzylammonium chloride³⁾ in ethanol in the presence of sodium ethoxide to give 6-bromo-3-O-benzyl methylacetal (5) in 82% yield, [mp ll0°; NMR (in CDCl₃) δ , 2.46 (CH₃), 3.45 (OCH₃), 4.95 (5'-CH₂-,d), 5.10 (Ar-CH₂-), 6.18 (4'-CH-), 7.33 (Ar-H); UV (in MeOH) nm, 225 (sh), 285 (6,770)].

Bromine atom in (5) was substituted with lithium by treating (5) with nbutyllithium in THF at -78° under argon. To the lithium compound (6) colored dark red, was added 1.5 equiv. dimethylformamide in dry THF and kept for 4 h. After treating reaction mixture with dil. HCl, usual workup gave 6-formyl-3-O-benzyl methylacetal (7) in 72% yield,⁴⁾ [mp 103°; mass, 299 (M^+), 268; NMR (in CDCl₃) δ , 2.60 (CH₃), 3.49 (OCH₃), 6.25, 5.60 (4'-CH₂-, d, J=12 Hz), 5.34 (ArCH₂O), 6.30 (4'-CH-), 7.40 (Ar-H), 10.0 (-CH=O), UV (in MeOH) nm, 293 nm (9,620), 275 (sh)].

Reaction of lithium compound (6) with N,N-dimethylacetamide and N,N-dimethyl-4,7,10-trioxa-ll-phenylundecanoyl-l-amide gave corresponding 6-acylpyridoxal derivatives (8) and (9) in 18 and 6% yields respectively. (8) [mp 95°; mass, 322 (M^+); NMR (in CDCl₃) δ , 2.56, 2.66 (-CH₃), 3.45 (-OCH₃), 3.2-3.5 (5'-CH₂-, Ar-CH₂-), 6.26 (4'-CH-), 7.39 (Ar-H), UV (in EtOH) nm, 294 (ll,200), 260 (8,320)]. (9) [oil; mass, 521 (M⁺); NMR (in CDCl₃) δ , 2.48 (-CH₃), 3.42 (OCH₃), 3.88 (-CO-CH₂-<u>CH</u>₂-O-, t, J=6), 5.28 (ArCH₂-O-3-C), 5.18, 5.42 (5'-CH₂-, d, J=12 Hz)].

In both cases, debrominated 6-H compound was obtained as a main product. Low yields of these products (8) and (9) were probably due to the release of α -methylene proton of amids which reacted with (6) to give 6-H compound.

All attempts to alkylate lithium compound (6) with alkylhalides such as allylbromide, allyliodide and other alkylating reagents were unseccessful. This fact is interesting considering that Rapoport *et al.*⁵⁾ successfully alkylated α -lithiumpyridine compound with several prenylbromides in their synthesis of piericidin analogues.

6-Formylpyridoxal derivative (7) is an useful intermediate for the synthesis of 6-alkylpyridoxal derivatives. For example, we have synthesized 6-carboxy-ethylpydoxal (13) and 6-(3'-aminopropyl)pyridoxal derivative (15) from (7). (7) was condensed with malonic acid in pyridine in the presence of a trace amount of piperidine at 80° for 2 h to give 6-carboxyvinyl-3-O-benzyl methylacetal (10) in 79.5% yield, [mp 192°; mass, 341 (M^+), 310, 219; NMR (in d-DMSO) δ , 2.42 (CH₃), 3.38 (OCH₃), 5.1-5.3 (ArCH₂,5'-CH₂-), 6.44 (4'-CH-), 6.60 (=CH-CO, d, J=16 Hz), 7.24-7.5 (-CH=, Ar-H); UV (in MeOH) nm, 285 (6,920)]. Similarly 6-cyanovinyl-3-O-benzyl methylacetal (11) was obtained by condensation of (7) with cyanoacetic acid in 65% yield. [mp 125°; IR (Nujol) 2,200 cm⁻¹ (C=N), NMR (in CDCl₃) δ , 2.52 (CH₃), 3.46 (OCH₃), 5.1-5.5 (ArCH₂-, 5'-CH₂-), 6.24 (4'-CH-), 6.40 (=CH-CN, J=16 Hz), 7.15 (-CH=, J=16 Hz), 7.39 (Ar-H); UV (in EtOH) nm, 320 (20,900), 272 (13,000), 223 (sh)].

(10) was hydrogenated over Pd-C (5%) in MeOH-THF (2:1) at room temperature under an atmospheric pressure for 3 h to give (12) in 56% yield in a pure crystalline form. [mp (dp) 170-180°; mass, 221 (-CH₃OH), 176; NMR (in d-DMSO) δ , 2.36 (CH₃), 2.5-2.8 (-CH₂CH₂-CO), 3.30 (OCH₃), 4.96 (5'-CH₂-), 6.16 (4'-CH-), UV (in MeOH) nm, 285 (6,920)].

(12) was easily hydrolyzed to (13) with 1 N HCl at 50° for 1 h quantita-

tively.

The unsaturated nitrile (11) was also hydrogenated to saturated amine (14) over Pd-C (15%) in ethanol in the presence of small amount of $CHCl_3^{6}$ under l atm of H₂ at room temperature. This amine (14) was purified and identified in the form of diacetate in 52% yield, [oil, NMR (in $CDCl_3$) δ , 1.94, 2.34, 2.42 (CH₃), 1.75-2.15 (C-CH₂-C), 2.71 (6C-CH₂-, t), 3.2-3.5 (-CH₂-N), 5.10 (5'-CH₂-, d, d), 6.12 (4'-CH-), 6.40 (NH)].

Acknowledgment

A part of this work was carried out under the support of a grant No. 347094 from the Ministry of Education, Science and Culture, Japanese Government.

References

1. a) M.J. Modak, Biochemistry, 15, 3620 (1976).

b) W. Koryntnyk, M. Ikawa, Methods in Enzymology, 18, 524 (1970).

- 2. S. Ikeda, S. Fukui, Biochem. Biophys. Res. Commun., 52, 482 (1973).
- W. Korytnyk, S.C. Srivastava, N. Angelino, P.G.G. Potti, B. Paul, J. Med. Chem., 16, 1096 (1973).
- 4. J.E. Parks, B.E. Wagner, R.H. Holm, J. Organometal. Chem., 56, 53 (1973).
- 5. E.P. Schmidtchen, H. Rapoport, J. Am. Chem. Soc., 99, 7014 (1977).

6. J.A. Secrist, III, M.W. Logue, J. Org. Chem., 37, 335 (1972).

(Received in Japan 7 April 1979)